400G OSFP Transceiver Types Overview

400G

OSFP stands for Octal Small Form-factor Pluggable, which consists of 8 electrical lanes, running at 50Gb/s each, for a total of the bandwidth of 400Gb/s. This post will give an introduction of 400G OSFP transceiver types, the fiber connections, and some QAs about OSFP.

400G OSFP Transceiver Types

Below lists some current main 400G OSFP transceiver types: OSFP SR8, OSFP DR4, OSFP DR4+, OSFP FR4, OSFP 2*FR4, and OSFP LR4, which summarize OSFP transceiver according to the two transmission types (over multimode fiber and single-mode fiber) they support.

Fibers Connections for 400G OSFP Transceivers

400G OSFP SR8

Figure 1 OSFP SR8 to OSFP SR8.jpg
  • 400G OSFP SR8 to 2× 200G SR4 over MTP-16 to 2× MPO-8 breakout cable.
Figure 2 OSFP SR8 to 2 200G SR4.jpg
  • 400G OSFP SR8 to 8× 50G SFP via MTP-16 to 8× LC duplex breakout cable with up to 100m.
Figure 3 OSFP SR8 to 8 50G SFP.jpg

400G OSFP DR4

  • 400G OSFP DR4 to 400G OSFP DR4 over an MTP-12/MPO-12 cable.Figure 1 OSFP SR8 to OSFP SR8.jpg
  • 400G OSFP DR4 to 4× 100G DR4 over MTP-12/MPO-12 to 4× LC duplex breakout cable.
Figure 4 OSFP DR4 to 4 100G DR.jpg

400G OSFP XDR4/DR4+

  • 400G OSFP DR4+ to 400G OSFP DR4+ over an MTP-12/MPO-12 cable.
  • 400G OSFP DR4+ to 4× 100G DR over MTP-12/MPO-12 to 4× LC duplex breakout cable.
Figure 5 OSFP DR4+ to 4 100G DR.jpg

400G OSFP FR4

400G OSFP FR4 to 400G OSFP FR4 over duplex LC cable.

Figure 6 OSFP FR4 to OSFP FR4.jpg

400G OSFP 2FR4

OSFP 2FR4 can break out to 2× 200G and interop with 2× 200G-FR4 QSFP transceivers via 2× CS to 2× LC duplex cable.

400G OSFP Transceivers: Q&A

Q: What does “SR8”, “DR4”, “XDR4”, “FR4”, and “LR4” mean?

A: “SR” refers to short range, and “8” implies there are 8 optical channels. “DR” refers to 500m reach using single-mode fiber, and “4” implies there are 4 optical channels. “XDR4” is short for “eXtended reach DR4”. And “LR” refers to 10km reach using single-mode fiber.

Q: Can I plug an OSFP transceiver module into a QSFP-DD port?

A: No. QSFP-DD and OSFP are totally different form factors. For more information about QSFP-DD transceivers, you can refer to 400G QSFP-DD Transceiver Types Overview. You can use only one kind of form factor in the corresponding system. E.g., if you have an OSFP system, OSFP transceivers and cables must be used.

Q: Can I plug a 100G QSFP28 module into an OSFP port?

A: Yes. A QSFP28 module can be inserted into an OSFP port but with an adapter. When using a QSFP28 module in an OSFP port, the OSFP port must be configured for a data rate of 100G instead of 400G.

Q: What other breakout options are possible apart from using OSFP modules mentioned above?

A: OSFP 400G DACs & AOCs are possible for breakout 400G connections. See 400G Direct Attach Cables (DAC & AOC) Overview for more information about 400G DACs & AOCs.

Original Source: 400G OSFP Transceiver Types Overview

Data Center Containment: Types, Benefits & Challenges

Over the past decade, data center containment has experienced a high rate of implementation by many data centers. It can greatly improve the predictability and efficiency of traditional data center cooling systems. This article will elaborate on what data center containment is, common types of it, and their benefits and challenges.

What Is Data Center Containment?

Data center containment is the separation of cold supply air from the hot exhaust air from IT equipment so as to reduce operating cost, optimize power usage effectiveness, and increase cooling capacity. Containment systems enable uniform and stable supply air temperature to the intake of IT equipment and a warmer, drier return air to cooling infrastructure.

Types of Data Center Containment

There are mainly two types of data center containment, hot aisle containment and cold aisle containment.

Hot aisle containment encloses warm exhaust air from IT equipment in data center racks and returns it back to cooling infrastructure. The air from the enclosed hot aisle is returned to cooling equipment via a ceiling plenum or duct work, and then the conditioned air enters the data center via raised floor, computer room air conditioning (CRAC) units, or duct work.

Hot aisle containment

Cold aisle containment encloses cold aisles where cold supply air is delivered to cool IT equipment. So the rest of the data center becomes a hot-air return plenum where the temperature can be high. Physical barriers such as solid metal panels, plastic curtains, or glass are used to allow for proper airflow through cold aisles.

Cold aisle containment

Hot Aisle vs. Cold Aisle

There are mixed views on whether it’s better to contain the hot aisle or the cold aisle. Both containment strategies have their own benefits as well as challenges.

Hot aisle containment benefits

  • The open areas of the data center are cool, so that visitors to the room will not think the IT equipment is not being cooled sufficiently. In addition, it allows for some low density areas to be un-contained if desired.
  • It is generally considered to be more effective. Any leakages that come from raised floor openings in the larger part of the room go into the cold space.
  • With hot aisle containment, low-density network racks and stand-alone equipment like storage cabinets can be situated outside the containment system, and they will not get too hot, because they are able to stay in the lower temperature open areas of the data center.
  • Hot aisle containment typically adjoins the ceiling where fire suppression is installed. With a well-designed space, it will not affect normal operation of a standard grid fire suppression system.

Hot aisle containment challenges

  • It is generally more expensive. A contained path is needed for air to flow from the hot aisle all the way to cooling units. Often a drop ceiling is used as return air plenum.
  • High temperatures in the hot aisle can be undesirable for data center technicians. When they need to access IT equipment and infrastructure, a contained hot aisle can be a very uncomfortable place to work. But this problem can be mitigated using temporary local cooling.

Cold aisle containment benefits

  • It is easy to implement without the need for additional architecture to contain and return exhaust air such as a drop ceiling or air plenum.
  • Cold aisle containment is less expensive to install as it only requires doors at ends of aisles and baffles or roof over the aisle.
  • Cold aisle containment is typically easier to retrofit in an existing data center. This is particularly true for data centers that have overhead obstructions such as existing duct work, lighting and power, and network distribution.

Cold aisle containment challenges

  • When utilizing a cold aisle system, the rest of the data center becomes hot, resulting in high return air temperatures. It also may create operational issues if any non-contained equipment such as low-density storage is installed in the general data center space.
  • The conditioned air that leaks from the openings under equipment like PDUs and raised floor tend to enter air paths that return to cooling units. This reduces the efficiency of the system.
  • In many cases, cold aisles have intermediate ceilings over the aisle. This may affect the overall fire protection and lighting design, especially when added to an existing data center.

How to Choose the Best Containment Option?

Every data center is unique. To find the most suitable option, you have to take into account a number of aspects. The first thing is to evaluate your site and calculate the Cooling Capacity Factor (CCF) of the computer room. Then observe the unique layout and architecture of each computer room to discover conditions that make hot aisle or cold aisle containment preferable. With adequate information and careful consideration, you will be able to choose the best containment option for your data center.

Article Source: Data Center Containment: Types, Benefits & Challenges

Related Articles:

What Is a Containerized Data Center: Pros and Cons

The Most Common Data Center Design Missteps